Неевклидовы геометрии - ορισμός. Τι είναι το Неевклидовы геометрии
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Неевклидовы геометрии - ορισμός

ГЕОМЕТРИЧЕСКАЯ СИСТЕМА, ОТЛИЧАЮЩАЯСЯ ОТ ГЕОМЕТРИИ ЕВКЛИДА
Неевклидовы геометрии; Неэвклидова геометрия
  • 1. [[Евклидова геометрия]];<br>2. [[Сферическая геометрия]];<br>3. [[Геометрия Лобачевского]]

НЕЕВКЛИДОВЫ ГЕОМЕТРИИ         
геометрические системы, отличные от евклидовой геометрии. Среди неевклидовых геометрий особое значение имеет Лобачевского геометрия.
Неевклидовы геометрии         

в буквальном понимании - все геометрические системы, отличные от геометрии Евклида; однако обычно термин "Н. г." применяется лишь к геометрическим системам (отличным от геометрии Евклида), в которых определено движение фигур, причём с той же степенью свободы, что и в геометрии Евклида. Степень свободы движения фигур в евклидовой плоскости характеризуется тем, что каждая фигура без изменения расстояний между её точками может быть перемещена так, чтобы любая выбранная её точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой своей точки. В евклидовом трёхмерном пространстве каждая фигура может быть перемещена так, чтобы любая выбранная её точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой оси, проходящей через любую её точку.

Среди Н. г. особое значение имеют Лобачевского геометрия и Римана геометрия, которые чаще всего и подразумевают, когда говорят о Н. г. Геометрия Лобачевского - первая геометрическая система, отличная от геометрии Евклида, и первая более общая теория (включающая евклидову геометрию как предельный случай). Геометрия Римана, открытая позднее, в некоторых отношениях противоположна геометрии Лобачевского, но вместе с тем служит ей необходимым дополнением. Совместное исследование геометрий Евклида (см. Евклидова геометрия), Лобачевского и Римана позволило в должной мере выяснить особенности каждой из них, а также их связи друг с другом и с другими геометрическими системами. Ниже обе Н. г. и геометрия Евклида сопоставляются как синтетические теории, затем в плане дифференциальной геометрии и, наконец, в виде проективных моделей.

Н. г. как синтетические теории. Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Именно, согласно аксиоме о параллельных евклидовой геометрии, через точку, не лежащую на данной прямой а, проходит только одна прямая, которая лежит в одной плоскости с прямой а и не пересекает эту прямую; в геометрии Лобачевского принимается, что таких прямых несколько (затем доказывается, что их бесконечно много).

В геометрии Римана принимается аксиома: каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных. Т. о., система аксиом, лежащая в основе геометрии Римана, необходимо должна отличаться от системы аксиом евклидовой геометрии не только заменой одной аксиомы о параллельных другим утверждением, но и в части остальных аксиом. Различными в этих геометриях являются аксиомы, которые служат для обоснования так называемых отношений порядка геометрических элементов. Сущность в следующем: в евклидовой геометрии и в геометрии Лобачевского порядок точек на прямой является линейным, т. е. подобным порядку в множестве действительных чисел; в геометрии Римана порядок точек на прямой является циклическим, т. е. подобным порядку в множестве точек на окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую (топологической моделью плоскости Римана служит Проективная плоскость).

Требования аксиом, определяющих движение фигур, для всех трёх геометрий одинаковы.

Примеры теорем Н. г.

1) В геометрии Лобачевского сумма внутренних углов любого треугольника меньше двух прямых; в геометрии Римана эта сумма больше двух прямых (в евклидовой геометрии она равна двум прямым).

2) В геометрии Лобачевского площадь треугольника выражается формулой:

S = R2(π - α - β - γ), (1)

где α, β, γ - внутренние углы треугольника, R - некоторая постоянная, которая определяется выбором единицы измерения площадей. В геометрии Римана имеет место формула:

S = R2(α + β + γ - π) (2)

при аналогичном значении символов (в евклидовой геометрии зависимости между площадью треугольника и суммой его углов нет).

3) В геометрии Лобачевского между сторонами и углами треугольника существует ряд зависимостей, например

где sh, ch - гиперболические синус и косинус (см. Гиперболические функции), a, b, c - стороны треугольника, α, β, γ - противолежащие им углы, R - постоянная, определяемая выбором масштаба; для прямоугольного треугольника (с гипотенузой с и прямым углом γ) имеет место, например, равенство:

При некотором согласовании линейного масштаба и единицы измерения площадей постоянная R в формулах (1), (3), (4) будет одинаковой. Число R называется радиусом кривизны плоскости (или пространства) Лобачевского. Число R при данном масштабе выражает определённый отрезок в плоскости (пространстве) Лобачевского, который также называют радиусом кривизны. Если масштаб меняется, то меняется число R, но радиус кривизны, как отрезок, остаётся неизменным. Если радиус кривизны принять за масштабный отрезок, то R = 1. В геометрии Римана существуют сходные равенства:

(для произвольного треугольника) и

(для прямоугольного) при аналогичном значении символов. Число R называют радиусом кривизны плоскости (или пространства) Римана. Как видно из формул (4) и (6), в каждой из Н. г. гипотенуза прямоугольного треугольника определяется его углами; более того, в Н. г. стороны любого треугольника определяются его углами, т. е. не существует подобных треугольников, кроме равных. В евклидовой геометрии нет формул, аналогичных формулам (4) и (6), и нет никаких др. формул, выражающих линейные величины через угловые. При замене R на Ri

формулы (1), (3), (4) превращаются в формулы (2), (5), (6); вообще, при замене R на Ri все метрические формулы геометрии Лобачевского (сохраняющие при этой замене геометрический смысл) переходят в соответствующие формулы геометрии Римана. При R → ∞ и те и другие дают в пределе формулы евклидовой геометрии (либо теряют смысл). Стремление к бесконечности величины R означает, что масштабный отрезок является бесконечно малым по сравнению с радиусом кривизны (как с отрезком). То обстоятельство, что при этом формулы Н. г. переходят в пределе в формулы евклидовой геометрии, означает, что для малых (по сравнению с радиусом кривизны) неевклидовых фигур соотношения между их элементами мало отличны от евклидовых.

Н. г. в плане дифференциальной геометрии. В каждой из Н. г. дифференциальные свойства плоскости аналогичны дифференциальным свойствам поверхностей евклидова пространства (см. Дифференциальная геометрия); в неевклидовой плоскости могут быть введены внутренние координаты u, v, так что дифференциал ds дуги кривой, соответствующий дифференциалам du, dv координат, определяется равенством:

ds2 = Edu2 + 2Fdudv + Gdv2 (7)

Пусть, в частности, в качестве координаты u произвольной точки М берётся длина перпендикуляра, опущенного из М на фиксированную прямую, а в качестве координаты v - расстояние от фиксированной точки О этой прямой до основания указанного перпендикуляра; величины u, v следует брать со знаком, подобно обычным декартовым координатам. Тогда формула (7) для плоскости Лобачевского будет иметь вид:

а для плоскости Римана

R - та же постоянная, которая входит в формулы предыдущего раздела (радиус кривизны). Правые части (8) и (9) суть метрические формы поверхностей евклидова пространства, имеющих соответственно постоянную отрицательную кривизну К = - 1/R2 (как, например, псевдосфера) и постоянную положительную кривизну К = 1/R2 (как, например, сфера). Поэтому внутренняя геометрия достаточно малой части плоскости Лобачевского совпадает с внутренней геометрией на соответствующей части поверхности постоянной отрицательной кривизны. Аналогично, внутренняя геометрия достаточно малых частей плоскости Римана реализуется на поверхностях постоянной положительной кривизны (поверхностей, которые реализуют геометрию всей плоскости Лобачевского, в евклидовом пространстве нет). При замене R на Ri метрическая форма (8) переходит в метрическую форму (9). Так как метрическая форма определяет внутреннюю геометрию поверхности, то при такой замене и другие метрические соотношения геометрии Лобачевского переходят в метрические соотношения геометрии Римана (что уже было отмечено выше). При R = ∞ каждое из равенств (8) и (9) даёт

ds2 = du2 + dv2,

т. е. метрическую форму евклидовой плоскости.

Трёхмерные неевклидовы пространства по своим дифференциальным свойствам относятся к числу римановых пространств в широком смысле (см. Риманово пространство) и выделяются среди них прежде всего тем, что имеют постоянную риманову кривизну (см. Риманова геометрия). Как в двумерном, так и в трёхмерном случае постоянство кривизны обеспечивает однородность пространства, т. е. возможность движения фигур в нём, причём с той же степенью свободы, как (соответственно) на евклидовой плоскости или в евклидовом пространстве. Пространство Лобачевского имеет отрицательную кривизну, равную - 1/R2, пространство Римана - положительную кривизну, равную 1/R2 (R - радиус кривизны). Евклидово пространство занимает промежуточное положение и является пространством нулевой кривизны.

Пространства постоянной кривизны могут иметь весьма разнообразное строение в смысле топологии (См. Топология). Среди всех пространств постоянной отрицательной кривизны пространство Лобачевского однозначно выделяется двумя свойствами: оно полно (в смысле полноты метрического пространства (См. Метрическое пространство)), топологически эквивалентно обычному евклидову пространству. Пространство Римана среди всех пространств положительной кривизны однозначно выделяется свойством топологической эквивалентности проективному пространству. Аналогичными условиями выделяются многомерные пространства Лобачевского и Римана среди многомерных пространств постоянной римановой кривизны.

Н. г. в виде проективных моделей. Пусть на проективной плоскости введены проективные однородные координаты (x1, x2, x3) и задана некоторая овальная линия второго порядка, обозначаемая дальше буквой k, например

x12 + x22 + x32 = 0

Каждое проективное Отображение проективной плоскости на себя, которое оставляет на месте линию k, называется автоморфизмом относительно k. Каждый автоморфизм отображает внутренние точки линии k также во внутренние её точки. Множество всех автоморфизмов относительно линии k составляет группу (См. Группа). Пусть рассматриваются только точки проективной плоскости, лежащие внутри k; хорды линии k называются "прямыми". Две фигуры пусть считаются равными, если одна из них переводится в другую некоторым автоморфизмом. Так как автоморфизмы составляют группу, то имеют место основные свойства равенства фигур: если фигура А равна фигуре В, то В равна А; если фигура А равна фигуре В, а В равна фигуре С, то А. равна С. В получаемой т. о. геометрические теории будут соблюдены требования всех аксиом евклидовой геометрии, кроме аксиомы о параллельных: вместо этой последней аксиомы соблюдается аксиома о параллельных Лобачевского (см. рисунок, где показано, что через точку Р проходит бесконечно много "прямых", не пересекающих "прямой" а). Тем самым получается истолкование (двумерной) геометрии Лобачевского при помощи объектов проективной плоскости или, как говорят, проективная модель геометрии Лобачевского; линию k называют абсолютом этой модели. Автоморфизмы относительно k играют роль движений. Поэтому геометрию Лобачевского можно рассматривать как теорию, изучающую свойства фигур и связанные с фигурами величины, которые остаются неизменными при автоморфизмах; короче говоря, геометрию Лобачевского можно рассматривать как теорию инвариантов группы автоморфизмов относительно овального абсолюта.

Геометрия Римана (двумерная) допускает сходное истолкование; именно она является теорией инвариантов относительно нулевого абсолюта

x12 + x22 + x32 = 0. (10)

При этом в качестве точек и прямых модели берутся все точки и прямые проективной плоскости; автоморфизмы определяются чисто алгебраически как линейные преобразования, которые переводят уравнение (10) в уравнение того же вида.

Евклидову геометрию также можно рассматривать как теорию инвариантов некоторой группы проективных преобразований, именно, группы автоморфизмов относительно вырожденного абсолюта

x12 + x22 = 0, x3 = 0,

т. е. относительно мнимых точек (1, i, 0), (1, -i, 0); эти точки называют круговыми точками. Предметом модели являются все точки проективной плоскости, кроме точек прямой x3 = 0, и все прямые проективной плоскости, кроме прямой x3 = 0. В последнем случае автоморфизмы играют роль подобных преобразований, а не движений, как в случае Н. г.

Рассмотренные модели относятся к двумерным геометриям; проективные модели высших размерностей строятся аналогично.

Соответственно характеру уравнений абсолютов, геометрия Лобачевского называется гиперболической, геометрия Римана - эллиптической, геометрия Евклида - параболической.

Н. г. имеют существенные приложения в математике (теории аналитических функций, теории групп и др.) и смежных с нею областях (например, в теории относительности). Эти приложения основаны на том, что разнообразные конкретные модели Н. г. связаны с различными объектами и понятиями указанных разделов математики и смежных с нею областей. О значении Н. г. см. также Геометрия.

Лит.: Александров П. С., Что такое неевклидова геометрия, М., 1950; Клейн Ф., Неевклидова геометрия, пер. с нем., М. - Л., 1936; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.

Н. В. Ефимов.

Рис. к ст. Неевклидовы геометрии.

Неевклидова геометрия         
Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана).

Βικιπαίδεια

Неевклидова геометрия

Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана).

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — совпадающим по локальным свойствам сферической или геометрии Римана, отрицательная — геометрии Лобачевского.

Παραδείγματα από το σώμα κειμένου για Неевклидовы геометрии
1. Пытаясь доказать пятый постулат Евклида о параллельных прямых, Лобачевский и Риман создали свои неевклидовы геометрии, в которых само понятие параллельности совершенно иное.
Τι είναι НЕЕВКЛИДОВЫ ГЕОМЕТРИИ - ορισμός